Concerns on location privacy frequently arise with the rapid development of GPS enabled devices and location-based applications. While spatial transformation techniques such as location perturbation or generalization have been studied extensively, most techniques rely on syntactic privacy models without rigorous privacy guarantee. Many of them only consider static scenarios or perturb the location at single timestamps without considering temporal correlations of a moving user’s locations, and hence are vulnerable to various inference attacks. While differential privacy has been accepted as a standard for privacy protection, applying differential privacy in location based applications presents new challenges, as the protection needs to be enforced on the fly for a single user and needs to incorporate temporal correlations between a user’s locations. In this paper, we propose a systematic solution to preserve location privacy with rigorous privacy guarantee. First, we propose a ne...