Argumentative discussion is a highly demanding task. In order to help people in such situations, this paper provides an innovative methodology for developing an agent that can support people in argumentative discussions by proposing possible arguments to them. By analyzing more than 130 human discussions and 140 questionnaires, answered by people, we show that the wellestablished Argumentation Theory is not a good predictor of people’s choice of arguments. Then, we present a model that has 76% accuracy when predicting peoples top three argument choices given a partial deliberation. We present the Predictive and Relevance based Heuristic agent (PRH), which uses this model with a heuristic that estimates the relevance of possible arguments to the last argument given in order to propose possible arguments. Through extensive human studies with over 200 human subjects, we show that peoples satisfaction from the PRH agent is significantly higher than from other agents that propose argume...