Emerging fast, non-volatile memories (e.g., phase change memories, spin-torque MRAMs, and the memristor) reduce storage access latencies by an order of magnitude compared to state-of-the-art flash-based SSDs. This improved performance means that software overheads that had little impact on the performance of flash-based systems can present serious bottlenecks in systems that incorporate these new technologies. We describe a novel storage hardware and software architecture that nearly eliminates two sources of this overhead: Entering the kernel and performing file system permission checks. The new architecture provides a private, virtualized interface for each process and moves file system protection checks into hardware. As a result, applications can access file data without operating system intervention, eliminating OS and file system costs entirely for most accesses. We describe the support the system provides for fast permission checks in hardware, our approach to notifying a...
Adrian M. Caulfield, Todor I. Mollov, Louis Alex E