The pipeline of most Phrase-Based Statistical Machine Translation (PB-SMT) systems starts from automatically word aligned parallel corpus. But word appears to be too fine-grained in some cases such as non-compositional phrasal equivalences, where no clear word alignments exist. Using words as inputs to PBSMT pipeline has inborn deficiency. This paper proposes pseudo-word as a new start point for PB-SMT pipeline. Pseudo-word is a kind of basic multi-word expression that characterizes minimal sequence of consecutive words in sense of translation. By casting pseudo-word searching problem into a parsing framework, we search for pseudo-words in a monolingual way and a bilingual synchronous way. Experiments show that pseudo-word significantly outperforms word for PB-SMT model in both travel translation domain and news translation domain.