The area of derandomization attempts to provide efficient deterministic simulations of randomized algorithms in various algorithmic settings. Goldreich and Wigderson introduced a notion of “typicallycorrect” deterministic simulations, which are allowed to err on few inputs. In this paper we further the study of typically-correct derandomization in two ways. First, we develop a generic approach for constructing typically-correct derandomizations based on seed-extending pseudorandom generators, which are pseudorandom generators that reveal their seed. We use our approach to obtain both conditional and unconditional typically-correct derandomization results in various algorithmic settings. We show that our technique strictly generalizes an earlier approach by Shaltiel based on randomness extractors, and simplifies the proofs of some known results. We also demonstrate that our approach is applicable in algorithmic settings where earlier work did not apply. For example, we present a ty...