Accurate and efficient integration of geospatial data is an important problem with applications in areas such as emergency response and urban planning. Some of the key challenges in supporting large-scale geospatial data integration are automatically computing the quality of the data provided by a large number of geospatial sources and dynamically providing high quality answers to the user queries based on a quality criteria supplied by the user. We describe a framework called the Quality-driven Geospatial Mediator (QGM) that supports efficient and accurate integration of geospatial data from a large number of sources. The key contributions of our framework are: (1) the ability to automatically estimate the quality of data provided by a source by using the information from another source of known quality, (2) representing the quality of data provided by the sources in a declarative data integration framework, and (3) a query answering technique that exploits the quality information to...
Craig A. Knoblock, José Luis Ambite, Snehal