Sciweavers

SYNASC
2006
IEEE

A Quality Measure for Multi-Level Community Structure

14 years 5 months ago
A Quality Measure for Multi-Level Community Structure
Mining relational data often boils down to computing clusters, that is finding sub-communities of data elements forming cohesive sub-units, while being well separated from one another. The clusters themselves are sometimes terms “communities” and the way clusters relate to one another is often referred to as a “community structure”. We study a modularity criterion MQ introduced by Mancoridis et al. in order to infer community structure on relational data. We prove a fundamental and useful property of the modularity measure MQ, showing that it can be approximated by a gaussian distribution, making it a prevalent choice over less focused optimization criterion for graph clustering. This makes it possible to compare two different clusterings of a same graph as well as asserting the overall quality of a given clustering relying on the fact that MQ is gaussian. Moreover, we introduce a generalization extending MQ to hierarchical clusterings of graphs which reduces to the original ...
Maylis Delest, Jean-Marc Fedou, Guy Melanço
Added 12 Jun 2010
Updated 12 Jun 2010
Type Conference
Year 2006
Where SYNASC
Authors Maylis Delest, Jean-Marc Fedou, Guy Melançon
Comments (0)