This paper focuses on the application of rough set constructs to inductive learning from a database. A design guideline is suggested, which provides users the option to choose appropriate attributes, for the construction of classification rules. Error probabilities for the resultant rule are derived. A classification rule can be further generalized using concept hierarchies. The condition for preventing overgeneralization is derived. Moreover, given a constraint, an algorithm for generating a rule with minimal error probability is proposed.
Yang Xiang, S. K. Michael Wong, Nick Cercone