Facial aging has been only partially studied in the past and mostly in a qualitative way. This paper presents a novel approach to the estimation of facial aging aimed to the quantitative evaluation of the changes in facial appearance over time. In particular, the changes both in face shape and texture, due to short-time aging, are considered. The developed framework exploits the concept of "distinctiveness" of facial features and the temporal evolution of such measure. The analysis is performed both at a global and local level to define the features which are more stable over time. Several experiments are performed on publicly available databases with image sequences densely sampled over a time span of several years. The reported results clearly show the potential of the methodology to a number of applications in biometric identification from human faces.