Automated evaluation is crucial in the context of automated text summaries, as is the case with evaluation of any of the language technologies. While the quality of a summary is determined by both content and form of a summary, throughout the literature there has been extensive study on the automatic and semi-automatic evaluation of content of summaries and most such applications have been largely successful. What lacks is a careful investigation of automated evaluation of readability aspects of a summary. In this work we dissect readability into five parameters and try to automate the evaluation of grammaticality of text summaries. We use surface level methods like Ngrams and LCS sequence on POS-tag sequences and chunk-tag sequences to capture acceptable grammatical constructions, and these approaches have produced impressive results. Our results show that it is possible to use relatively shallow features to quantify degree of acceptance of grammaticality.