Sciweavers

TEC
2002

Quantum-inspired evolutionary algorithm for a class of combinatorial optimization

13 years 11 months ago
Quantum-inspired evolutionary algorithm for a class of combinatorial optimization
This paper proposes a novel evolutionary algorithm inspired by quantum computing, called a quantum-inspired evolutionary algorithm (QEA), which is based on the concept and principles of quantum computing, such as a quantum bit and superposition of states. Like other evolutionary algorithms, QEA is also characterized by the representation of the individual, the evaluation function, and the population dynamics. However, instead of binary, numeric, or symbolic representation, QEA uses a Q-bit, defined as the smallest unit of information, for the probabilistic representation and a Q-bit individual as a string of Q-bits. A Q-gate is introduced as a variation operator to drive the individuals toward better solutions. To demonstrate its effectiveness and applicability, experiments are carried out on the knapsack problem, which is a well-known combinatorial optimization problem. The results show that QEA performs well, even with a small population, without premature convergence as compared to ...
Kuk-Hyun Han, Jong-Hwan Kim
Added 23 Dec 2010
Updated 23 Dec 2010
Type Journal
Year 2002
Where TEC
Authors Kuk-Hyun Han, Jong-Hwan Kim
Comments (0)