It is well known that high-dimensional nearest-neighbor retrieval is very expensive. Many signal processing methods suffer from this computing cost. Dramatic performance gains can be obtained by using approximate search, such as the popular Locality-Sensitive Hashing. This paper improves LSH by performing an on-line selection of the most appropriate hash functions from a pool of functions. An additional improvement originates from the use of E8 lattices for geometric hashing instead of one-dimensional random projections. A performance study based on state-of-the-art high-dimensional descriptors computed on real images shows that our improvements to LSH greatly reduce the search complexity for a given level of accuracy.