Recent advances have been reported in detecting and estimating the location of more than one target within a single monopulse radar beam. Successful tracking of those targets has been achieved with the aid of nonlinear filters that approximate the targets' states' conditional pdf, bypassing the measurement extraction stage, and operating directly on the monopulse sum/difference data, i.e., without measurement extraction. The problem of detecting a target spawn will be tackled in this paper. Particle filters will be employed as nonlinear tracking filters to approximate the posterior probability densities of the targets' states under different hypotheses of the number of targets, which in turn can be used to evaluate the likelihood ratio between two different hypotheses at subsequent time steps. Ultimately, a quickest detection procedure based on sequential processing of the likelihood ratios will be used to decide on a change in the underlying target model as an indicati...