Sciweavers

STOC
2009
ACM

Random graphs and the parity quantifier

15 years 1 months ago
Random graphs and the parity quantifier
The classical zero-one law for first-order logic on random graphs says that for every first-order property in the theory of graphs and every p (0, 1), the probability that the random graph G(n, p) satisfies approaches either 0 or 1 as n approaches infinity. It is well known that this law fails to hold for any formalism that can express the parity quantifier: for certain properties, the probability that G(n, p) satisfies the property need
Phokion G. Kolaitis, Swastik Kopparty
Added 23 Nov 2009
Updated 23 Nov 2009
Type Conference
Year 2009
Where STOC
Authors Phokion G. Kolaitis, Swastik Kopparty
Comments (0)