We propose a sequential randomized algorithm, which at each step concentrates on functions having both low risk and low variance with respect to the previous step prediction function. It satisfies a simple risk bound, which is sharp to the extent that the standard statistical learning approach, based on supremum of empirical processes, does not lead to algorithms with such a tight guarantee on its efficiency. Our generalization error bounds complement the pioneering work of Cesa-Bianchi et al. [12] in which standard-style statistical results were recovered with tight constants using worst-case analysis. A nice feature of our analysis of the randomized estimator is to put forward the links between the probabilistic and worst-case viewpoint. It also allows to recover recent model selection results due to Juditsky et al. [16] and to improve them in least square regression with heavy noise, i.e. when no exponential moment condition is assumed on the output.