Sciweavers

TREC
2003

Ranking Function Discovery by Genetic Programming for Robust Retrieval

14 years 1 months ago
Ranking Function Discovery by Genetic Programming for Robust Retrieval
Ranking functions are instrumental for the success of an information retrieval (search engine) system. However nearly all existing ranking functions are manually designed based on experience, observations and probabilistic theories. This paper tested a novel ranking function discovery technique proposed in [Fan 2003a, Fan2003b] – ARRANGER (Automatic geneRation of RANking functions by GEnetic pRogramming), which uses Genetic Programming (GP) to automatically learn the “best” ranking function, for the robust retrieval task. Ranking function discovery is essentially an optimization problem. As the search space here is not a coordinate system, most of the traditional optimization algorithms could not work. However, this ranking discovery problem could be easily tackled by ARRANGER. In our evaluations on 150 queries from the ad-hoc track of TREC 6, 7, and 8, the performance of our system (in average precision) was improved by nearly 16%, after replacing Okapi BM25 function with a fun...
Li Wang, Weiguo Fan, Rui Yang, Wensi Xi, Ming Luo,
Added 01 Nov 2010
Updated 01 Nov 2010
Type Conference
Year 2003
Where TREC
Authors Li Wang, Weiguo Fan, Rui Yang, Wensi Xi, Ming Luo, Ye Zhou, Edward A. Fox
Comments (0)