This paper addresses the desktop search problem by considering various techniques for ranking results of a search query over the file system. First, basic ranking techniques, which are based on a single file feature (e.g., file name, file content, access date, etc.) are considered. Next, two learning-based ranking schemes are presented, and are shown to be significantly more effective than the basic ranking methods. Finally, a novel ranking technique, based on query selectiveness is considered, for use during the cold-start period of the system. This method is also shown to be empirically effective, even though it does not involve any learning. Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval General Terms: Experimentation, Human Factors