Abstract In recent years, automatic human action recognition has been widely researched within the computer vision and image processing communities. Here we propose a realtime, embedded vision solution for human action recognition, implemented on an FPGA-based ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human action recognition system with simple motion features and a linear support vector machine classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template class of approaches, which include ``Motion History Image'' based techniques. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfigured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemen...