Unmanned Aerial Vehicles (UAVs) are increasingly becoming instrumental to many commercial applications, such as transportation and maintenance. However, these applications require flexibility, understanding of natural language, and comprehension of video streams that cannot currently be automated and instead require the intelligence of a skilled human pilot. While having one pilot individually supervising a UAV is not scalable, the machine intelligence, especially vision, required to operate a UAV is still inadequate. Hence, in this paper, we consider the use of crowd robotics to harness a real-time crowd to orientate a UAV in an unknown environment. In particular, we present two novel real-time crowd input aggregation methods. To evaluate these methods, we develop a new testbed for crowd robotics, called CrowdDrone, that allows us to evaluate crowd robotic systems in a variety of scenarios. Using this platform, we benchmark our real-time aggregation methods with crowds hired from Am...
Elliot Salisbury, Sebastian Stein, Sarvapali D. Ra