Interactive robotics demands real-time visual information about the environment. Real time vision processing, however, places a heavy load on the robot’s limited resources, and must accommodate other processes such as speech recognition, animated face displays, communication with other robots, navigation and control. For our entries in the 2000 American Association for Artificial Intelligence robot contest, we developed a vision module capable of providing real-time information about ten or more operators while maintaining at least a 20Hz frame rate and leaving sufficient processor time for the robot’s other capabilities. The vision module uses a probabilistic scheduling algorithm to ensure both timely information flow and a fast frame capture. The vision module makes its information available to other modules in the robot architecture through a shared memory structure. The information provided by the vision module includes the operator information along with a confidence measu...
Bruce A. Maxwell, Nathaniel Fairfield, Nikolas Joh