This paper studies three techniques that improve the quality of N-best hypotheses through additional regeneration process. Unlike the multi-system consensus approach where multiple translation systems are used, our improvement is achieved through the expansion of the Nbest hypotheses from a single system. We explore three different methods to implement the regeneration process: redecoding, n-gram expansion, and confusion network-based regeneration. Experiments on Chinese-to-English NIST and IWSLT tasks show that all three methods obtain consistent improvements. Moreover, the combination of the three strategies achieves further improvements and outperforms the baseline by 0.81 BLEU-score on IWSLT'06, 0.57 on NIST'03, 0.61 on NIST'05 test set respectively.