3D human motion capture by real-time monocular vision without using markers can be achieved by registering a 3D articulated model on a video. Registration consists in iteratively optimizing the match between primitives extracted from the model and the images with respect to the model position and joint angles. We extend a previous color-based registration algorithm with a more precise edge-based registration step. We present an experimental analysis of the residual error vs. the computation time and we discuss the balance between both approaches.