Sciweavers

ECCV
2006
Springer

Region Covariance: A Fast Descriptor for Detection and Classification

15 years 3 months ago
Region Covariance: A Fast Descriptor for Detection and Classification
We describe a new region descriptor and apply it to two problems, object detection and texture classification. The covariance of d-features, e.g., the three-dimensional color vector, the norm of first and second derivatives of intensity with respect to x and y, etc., characterizes a region of interest. We describe a fast method for computation of covariances based on integral images. The idea presented here is more general than the image sums or histograms, which were already published before, and with a series of integral images the covariances are obtained by a few arithmetic operations. Covariance matrices do not lie on Euclidean space, therefore we use a distance metric involving generalized eigenvalues which also follows from the Lie group structure of positive definite matrices. Feature matching is a simple nearest neighbor search under the distance metric and performed extremely rapidly using the integral images. The performance of the covariance features is superior to other me...
Oncel Tuzel, Fatih Porikli, Peter Meer
Added 16 Oct 2009
Updated 16 Oct 2009
Type Conference
Year 2006
Where ECCV
Authors Oncel Tuzel, Fatih Porikli, Peter Meer
Comments (0)