Sciweavers

KES
2005
Springer

Relative Magnitude of Gaussian Curvature from Shading Images Using Neural Network

14 years 6 months ago
Relative Magnitude of Gaussian Curvature from Shading Images Using Neural Network
Abstract. A new approach is proposed to recover the relative magnitude of Gaussian curvature from three shading images using neural network. Under the assumption that the test object has the same reflectance property as the calibration sphere of known shape, RBF neural network learns the mapping of three observed image intensities to the corresponding coordinates of (x, y). Three image intensities at the neighbouring points around any point are input to the neural network and the corresponding coordinates (x, y) are mapped onto a sphere. The previous approaches recovered the sign of Gaussian curvature from mapped points onto a sphere, further, this approach proposes a method to recover the relative magnitude of Gaussian curvature at any point by calulating the surrounding area consisting of four mapped points onto a sphere. Results are demonstrated by the experiments for the real object.
Yuji Iwahori, Shinji Fukui, Chie Fujitani, Yoshino
Added 28 Jun 2010
Updated 28 Jun 2010
Type Conference
Year 2005
Where KES
Authors Yuji Iwahori, Shinji Fukui, Chie Fujitani, Yoshinori Adachi, Robert J. Woodham
Comments (0)