In this paper we propose a novel document retrieval model in which text queries are augmented with multi-dimensional taxonomy restrictions. These restrictions may be relaxed at a cost to result quality. This new model may be applicable in many arenas, including multifaceted, product, and local search, where documents are augmented with hierarchical metadata such as topic or location. We present efficient algorithms for indexing and query processing in this new retrieval model. We decompose query processing into two sub-problems: first, an online search problem to determine the correct overall level of relaxation cost that must be incurred to generate the top k results; and second, a budgeted relaxation search problem in which all results at a particular relaxation cost must be produced at minimal cost. We show the latter problem is solvable exactly in two hierarchical dimensions, is NP-hard in three or more dimensions, but admits efficient approximation algorithms with provable guaran...