Sciweavers

CORR
2010
Springer

Removing Local Extrema from Imprecise Terrains

14 years 16 days ago
Removing Local Extrema from Imprecise Terrains
In this paper, we study imprecise terrains, that is, triangulated terrains with a vertical error interval in the vertices. We study the problem of removing as many local extrema (minima and maxima) from the terrain as possible. We show that removing only minima or only maxima can be done optimally in O(n log n) time, for a terrain with n vertices, while removing both at the same time is NP-hard. To show hardness, we exploit a connection to a graph problem that is a special case of 2-Disjoint Connected Subgraphs, a problem that has received quite some attention lately in the graph theory community. This special case of 2-Disjoint Connected Subgraphs is shown NP-hard.
Chris Gray, Frank Kammer, Maarten Löffler, Ro
Added 09 Dec 2010
Updated 09 Dec 2010
Type Journal
Year 2010
Where CORR
Authors Chris Gray, Frank Kammer, Maarten Löffler, Rodrigo I. Silveira
Comments (0)