Sciweavers

ECIR
2003
Springer

Representative Sampling for Text Classification Using Support Vector Machines

14 years 24 days ago
Representative Sampling for Text Classification Using Support Vector Machines
In order to reduce human efforts, there has been increasing interest in applying active learning for training text classifiers. This paper describes a straightforward active learning heuristic, representative sampling, which explores the clustering structure of ‘uncertain’ documents and identifies the representative samples to query the user opinions, for the purpose of speeding up the convergence of Support Vector Machine (SVM) classifiers. Compared with other active learning algorithms, the proposed representative sampling explicitly addresses the problem of selecting more than one unlabeled documents. In an empirical study we compared representative sampling both with random sampling and with SVM active learning. The results demonstrated that representative sampling offers excellent learning performance with fewer labeled documents and thus can reduce human efforts in text classification tasks.
Zhao Xu, Kai Yu, Volker Tresp, Xiaowei Xu, Jizhi W
Added 31 Oct 2010
Updated 31 Oct 2010
Type Conference
Year 2003
Where ECIR
Authors Zhao Xu, Kai Yu, Volker Tresp, Xiaowei Xu, Jizhi Wang
Comments (0)