We prove an exponential lower bound for the length of any resolution proof for the same set of clauses as the one used by Urquhart [13]. Our contribution is a significant simplification in the proof and strengthening of the bound, as compared to [13]. We use on the one hand a simplification similar to the one suggested by Beame and Pitassi in [1] for the case of the pidgeon hole clauses. Additionally, we base our construction on a simpler version of expander graphs than the ones used in [13]. These expander graphs are located in the core of the construction. We show the existence of our expanders by a Kolmogorov complexity argument which has not been used before in this context and might be of independent interest since the applicability of this method is quite general.