The emergence of scale free and small world properties in real world complex networks has stimulated lots of activity in the field of network analysis. An example of such a network comes from the field of Content Analysis (CA) and Text Mining where the goal is to analyze the contents of a set of web pages. The Network can be represented by the words appearing in the web pages as nodes and the edges representing a relation between two words if they appear in a document together. In this paper we present a CA system that helps users analyze these networks representing the textual contents of a set of web pages visually. Major contributions include a methodology to cluster complex networks based on duplication of nodes and identification of bridges i.e. words that might be of user interest but have a low frequency in the document corpus. We have tested this system with a number of data sets and users have found it very useful for the exploration of data. One of the case studies is pre...