—We propose a novel image segmentation technique using the robust, adaptive least kth order squares (ALKS) estimator which minimizes the kth order statistics of the squared of residuals. The optimal value of k is determined from the data, and the procedure detects the homogeneous surface patch representing the relative majority of the pixels. The ALKS shows a better tolerance to structured outliers than other recently proposed similar techniques: Minimize the Probability of Randomness (MINPRAN) and Residual Consensus (RESC). The performance of the new, fully autonomous, range image segmentation algorithm is compared to several other methods.