This paper describes a hierarchical image registration algorithm for affine motion recovery. The algorithm estimates the affine transformation parameters necessary to register any two digital images misaligned due to rotation, scale, shear, and translation. The parameters are computed iteratively in a coarse-to-fine hierarchical framework using a variationof the Levenberg-Marquadt nonlinear least squares optimization method. This approach yields a robust solution that precisely registers images with subpixel accuracy. A log-polar registration module is introduced to accommodate arbitrary rotation angles and a wide range of scale changes. This serves to furnish a good initial estimate for the optimization-based affine registration stage. We demonstrate the hybrid algorithm on pairs of digital images subjected to large affine motion.