Sciweavers

AMAI
2005
Springer

Robust inference of trees

14 years 10 days ago
Robust inference of trees
Abstract. This paper is concerned with the reliable inference of optimal treeapproximations to the dependency structure of an unknown distribution generating data. The traditional approach to the problem measures the dependency strength between random variables by the index called mutual information. In this paper reliability is achieved by Walley's imprecise Dirichlet model, which generalizes Bayesian learning with Dirichlet priors. Adopting the imprecise Dirichlet model results in posterior interval expectation for mutual information, and in a set of plausible trees consistent with the data. Reliable inference about the actual tree is achieved by focusing on the substructure common to all the plausible trees. We develop an exact algorithm that infers the substructure in time O(m4 ), m being the number of random variables. The new algorithm is applied to a set of data sampled from a known distribution. The method is shown to reliably infer edges of the actual tree even when the d...
Marco Zaffalon, Marcus Hutter
Added 15 Dec 2010
Updated 15 Dec 2010
Type Journal
Year 2005
Where AMAI
Authors Marco Zaffalon, Marcus Hutter
Comments (0)