Sciweavers

TSMC
2008

Robust Regularized Kernel Regression

14 years 10 days ago
Robust Regularized Kernel Regression
Robust regression techniques are critical to fitting data with noise in real-world applications. Most previous work of robust kernel regression is usually formulated into a dual form, which is then solved by some quadratic program solver consequently. In this correspondence, we propose a new formulation for robust regularized kernel regression under the theoretical framework of regularization networks and then tackle the optimization problem directly in the primal. We show that the primal and dual approaches are equivalent to achieving similar regression performance, but the primal formulation is more efficient and easier to be implemented than the dual one. Different from previous work, our approach also optimizes the bias term. In addition, we show that the proposed solution can be easily extended to other noise-reliable loss function, including the Huber- insensitive loss function. Finally, we conduct a set of experiments on both artificial and real data sets, in which promising res...
Jianke Zhu, Steven C. H. Hoi, Michael R. Lyu
Added 15 Dec 2010
Updated 15 Dec 2010
Type Journal
Year 2008
Where TSMC
Authors Jianke Zhu, Steven C. H. Hoi, Michael R. Lyu
Comments (0)