This paper conceives of tracking as the developing distinction of a foreground against the background. In this manner, fast changes in the object or background appearance can be dealt with. When modelling the target alone (and not its distinction from the background), changes of lighting or changes of viewpoint can invalidate the internal target model. As the main contribution, we propose a new model for the detection of the target using foreground/background texture discrimination. The background is represented as a set of texture patterns. During tracking, the algorithm maintains a set of discriminant functions each distinguishing one pattern in the object region from background patterns in the neighborhood of the object. The idea is to train the foreground/background discrimination dynamically, that is while the tracking develops. In our case, the discriminant functions are efficiently trained online using a differential version of Linear Discriminant Analysis (LDA). Object detectio...
Hieu Tat Nguyen, Arnold W. M. Smeulders