We present a novel and effective algorithm for rotation symmetry group detection from real-world images. We propose a frieze-expansion method that transforms rotation symmetry group detection into a simple translation symmetry detection problem. We define and construct a dense symmetry strength map from a given image, and search for potential rotational symmetry centers automatically. Frequency analysis, using Discrete Fourier Transform (DFT), is applied to the frieze-expansion patterns to uncover the types and the cardinality of multiple rotation symmetry groups in an image, concentric or otherwise. Furthermore, our detection algorithm can discriminate discrete versus continuous and cyclic versus dihedral symmetry groups, and identify the corresponding supporting regions in the image. Experimental results on over 80 synthetic and natural images demonstrate superior performance of our rotation detection algorithm in accuracy and in speed over the state of the art rotation detection al...
Seungkyu Lee, Robert T. Collins, Yanxi Liu