Most previous motion deblurring methods restore the degraded image assuming a shift-invariant linear blur filter. These methods are not applicable if the blur is caused by spatially variant motions. In this paper, we model the physical properties of a 2-D rigid body movement and propose a practical framework to deblur rotational motions from a single image. Our main observation is that the transparency cue of a blurred object, which represents the motion blur formation from an imaging perspective, provides sufficient information in determining the object movements. Comparatively, single image motion deblurring using pixel color/gradient information has large uncertainties in motion representation and computation. Our results are produced by minimizing a new energy function combining rotation, possible translations, and the transparency map using an iterative optimizing process. The effectiveness of our method is demonstrated using challenging image examples.