Process technology and environment-induced variability of gates and wires in VLSI circuits make timing analyses of such circuits a challenging task. Process variation can have a significant impact on both device (front-end of the line) and interconnect (back-end of the line) performance. Statistical static timing analysis techniques are being developed to tackle this important problem. Existing timing analysis tools divide the analysis into interconnect (wire) timing analysis and gate timing analysis. In this paper, we focus on statistical static timing analysis of coupled interconnects where crosstalk noise analysis is unavoidable. We propose a new framework for handling the effect of Gaussian and Non-Gaussian process variations on coupled interconnects. The technique allows for closed-form computation of interconnect delay probability density functions (PDFs) given variations in relevant process parameters such as the line width, metal thickness, and dielectric thickness in the pres...