End-users increasingly find the need to perform light-weight, customized schema mapping. State-of-the-art tools provide powerful functions to generate schema mappings, but they usually require an in-depth understanding of the semantics of multiple schemas and their correspondences, and are thus not suitable for users who are technically unsophisticated or when a large number of mappings must be performed. We propose a system for sample-driven schema mapping. It automatically constructs schema mappings, in real time, from userinput sample target instances. Because the user does not have to provide any explicit attribute-level match information, she is isolated from the possibly complex structure and semantics of both the source schemas and the mappings. In addition, the user never has to master any operations specific to schema mappings: she simply types data values into a spreadsheet-style interface. As a result, the user can construct mappings with a much lower cognitive burden. In...
Li Qian, Michael J. Cafarella, H. V. Jagadish