Following the exponential growth of social media, there now exist huge repositories of videos online. Among the huge volumes of videos, there exist large numbers of near-duplicate videos. Most existing techniques either focus on the fast retrieval of full copies or near-duplicates, or consider localization in a heuristic manner. This paper considers the scalable detection and localization of partial near-duplicate videos by jointly considering visual similarity and temporal consistency. Temporal constraints are embedded into a network structure as directed edges. Through the structure, partial alignment is novelly converted into a network flow problem where highly efficient solutions exist. To precisely decide the boundaries of the overlapping segments, pair-wise constraints generated from keypoint matching can be added to the network to iteratively refine the localization result. We demonstrate the effectiveness of partial alignment for three different tasks. The first task link...