Multiple phenomena often diffuse through a social network, sometimes in competition with one another. Product adoption and political elections are two examples where network diffusion is inherently competitive in nature. For example, individuals may choose to only select one product from a set of competing products (i.e. most people will need only one cell-phone provider) or can only vote for one person in a slate of political candidate (in most electoral systems). We introduce the weighted generalized annotated program (wGAP) framework for expressing competitive diffusion models. Applications are interested in the eventual results from multiple competing diffusion models (e.g. what is the likely number of sales of a given product, or how many people will support a particular candidate). We define the "most probable interpretation" (MPI) problem which technically formalizes this need. We develop algorithms to efficiently solve MPI and show experimentally that our algorithms w...
Matthias Broecheler, Paulo Shakarian, V. S. Subrah