We present the first general protocol for secure multiparty computation in which the total amount of work required by n players to compute a function f grows only polylogarithmically with n (ignoring an additive term that depends on n but not on the complexity of f). Moreover, the protocol is also nearly optimal in terms of resilience, providing computational security against an active, adaptive adversary corrupting a (1/2 - ) fraction of the players, for an arbitrary > 0.