We address a scheduling problem in the context of military aircraft maintenance where the goal is to meet the aircraft requirements for a number of missions in the presence of breakdowns. The assignment of aircraft to a mission must consider the requirements for the mission, the probability of aircraft failure, and capacity of the repair shop that maintains the aircraft. Therefore, a solution both assigns aircraft to missions and schedules the repair shop to meet the assignments. We propose a dispatching heuristic algorithm; three complete approaches based on mixed integer programming, constraint programming, and logic-based Benders decomposition; and a hybrid heuristic-complete approach. Experiments demonstrate that the logic-based Benders variation combining mixed integer programming and constraint programming outperforms the other approaches, that the dispatching heuristic can feasibly schedule the repair shop in a very short time, and that using the dispatching solution as a bound...
Maliheh Aramon Bajestani, J. Christopher Beck