Scheduling is a key concern for the execution of performancedriven Grid applications. In this paper we comparatively examine different existing approaches for scheduling of scientific workflow applications in a Grid environment. We evaluate three algorithms namely genetic, HEFT, and simple "myopic" and compare incremental workflow partitioning against the full-graph scheduling strategy. We demonstrate experiments using real-world scientific applications covering both balanced (symmetric) and unbalanced (asymmetric) workflows. Our results demonstrate that full-graph scheduling with the HEFT algorithm performs best compared to the other strategies examined in this paper.