This paper reports on the underlying IR problems encountered when indexing and searching with the Bulgarian language. For this language we propose a general light stemmer and demonstrate that it can be quite effective, producing significantly better MAP (around + 34%) than an approach not applying stemming. We implement the GL2 model derived from the Divergence from Randomness paradigm and find its retrieval effectiveness better than other probabilistic, vector-space and language models. The resulting MAP is found to be about 50% better than the classical tf idf approach. Moreover, increasing the query size enhances the MAP by around 10% (from T to TD). In order to compare the retrieval effectiveness of our suggested stopword list and the light stemmer developed for the Bulgarian language, we conduct a set of experiments on another stopword list and also a more complex and aggressive stemmer. Results tend to indicate that there is no statistically significant difference between thes...