Abstract. Secure computation consists of protocols for secure arithmetic: secret values are added and multiplied securely by networked processors. The striking feature of secure computation is that security is maintained even in the presence of an adversary who corrupts a quorum of the processors and who exercises full, malicious control over them. One of the fundamental primitives at the heart of secure computation is secret-sharing. Typically, the required secret-sharing techniques build on Shamir’s scheme, which can be viewed as a cryptographic twist on the Reed-Solomon error correcting code. In this work we further the connections between secure computation and error correcting codes. We demonstrate that threshold secure computation in the secure channels model can be based on arbitrary codes. For a network of size n, we then show a reduction in communication for secure computation amounting to a multiplicative polylogarithmic factor (in n) compared to classical methods for small...