The task of event trigger labeling is typically addressed in the standard supervised setting: triggers for each target event type are annotated as training data, based on annotation guidelines. We propose an alternative approach, which takes the example trigger terms mentioned in the guidelines as seeds, and then applies an eventindependent similarity-based classifier for trigger labeling. This way we can skip manual annotation for new event types, while requiring only minimal annotated training data for few example events at system setup. Our method is evaluated on the ACE-2005 dataset, achieving 5.7% F1 improvement over a state-of-the-art supervised system which uses the full training data.