Gene expression profiles with clinical outcome data enable monitoring of disease progression and prediction of patient survival at the molecular level. We present a new computational method for outcome prediction. Our idea is to use an informative subset of original training samples. This subset consists of only short-term survivors who died within a short period and long-term survivors who were still alive after a long follow-up time. These extreme training samples yield a clear platform to identify genes whose expression is related to survival. To find relevant genes, we combine two feature selection methods -- entropy measure and Wilcoxon rank sum test -- so that a set of sharp discriminating features are identified. The selected training samples and genes are then integrated by a support vector machine to build a prediction model, by which each validation sample is assigned a survival/relapse risk score for drawing Kaplan-Meier survival curves. We apply this method to two data set...