It has been argued that a central objective of nanotechnology is to make products inexpensively, and that self-replication is an effective approach to very low-cost manufacturing. The research presented here is intended to be a step towards this vision. We describe a computational simulation of nanoscale machines floating in a virtual liquid. The machines can bond together to form strands (chains) that self-replicate and self-assemble into user-specified meshes. There are four types of machines and the sequence of machine types in a strand determines the shape of the mesh they will build. A strand may be in an unfolded state, in which the bonds are straight, or in a folded state, in which the bond angles depend on the types of machines. By choosing the sequence of machine types in a strand, the user can specify a variety of polygonal shapes. A simulation typically begins with an initial unfolded seed strand in a soup of unbonded machines. The seed strand replicates by bonding with fre...
Robert Ewaschuk, Peter D. Turney