We consider temporal aspects of self-replication and evolvability – in particular, the massively asynchronous parallel and distributed nature of living systems. Formal views of self-reproduction and time are surveyed, and a general asynchronization construction for automata networks is presented. Evolution and evolvability are distinguished, and the evolvability characteristics of natural and artificial examples are overviewed. Minimal implemented evolvable systems achieving (1) asynchronous self-replication and evolution, as well as (2) protocultural transmission and evolution, are presented and analyzed for evolvability. Developmental genetic regulatory networks (DGRNs) are suggested as a novel paradigm for massive asynchronous computation and evolvability. An appendix classifies modes of life (with different degrees of aliveness) for natural and artificial living systems and possible transitions between them. 1 Models of Time: Logical vs. Physical Time We consider time in discr...
Chrystopher L. Nehaniv