Wormhole routing is most common in parallel architectures in which messages are sent in small fragments called flits. It is a lightweight and efficient method of routing messages between parallel processors. Self-stabilization is a technique that guarantees tolerance to transient faults (e.g. memory corruption or communication hazard) for a given protocol. Self-stabilization guarantees that the network recovers to a correct behavior in finite time, without the need for human intervention. Self-stabilization also guarantees the safety property, meaning that once the network is in a legitimate state, it will remain there until another fault occurs. This paper presents the first self-stabilizing network algorithm in the wormhole routing model, using the unidirectional ring topology. Our solution benefits from wormhole routing by providing high throughput and low latency, and from self-stabilization by ensuring automatic resilience to all possible transient failures.
Ajoy Kumar Datta, Maria Gradinariu, Anthony B. Ken